Robust Sequential Data Modeling Using an Outlier Tolerant Hidden Markov Model

Το τεκμήριο παρέχεται από τον φορέα :
Τεχνολογικό Πανεπιστήμιο Κύπρου   

Αποθετήριο :
Κτίσις   

δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



Robust Sequential Data Modeling Using an Outlier Tolerant Hidden Markov Model

Varvarigou, Theodora
Kosmopoulos, Dimitrios
Chatzis, Sotirios P.

article

2009-09
2016-07-05T06:09:15Z


Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian mixture models are well known to be highly intolerant to the presence of untypical data within the fitting data sets used for their estimation. Finite Student's t-mixture models have recently emerged as a heavier-tailed, robust alternative to Gaussian mixture models, overcoming these hurdles. To exploit these merits of Student's t-mixture models in the context of a sequential data modeling setting, we introduce, in this paper, a novel hidden Markov model where the hidden state distributions are considered to be finite mixtures of multivariate Student's t-densities. We derive an algorithm for the model parameters estimation under a maximum likelihood framework, assuming full, diagonal, and factor-analyzed covariance matrices. The advantages of the proposed model over conventional approaches are experimentally demonstrated through a series of sequential data modeling applications.

Engineering and Technology
Electrical Engineering - Electronic Engineering - Information Engineering

Expectation-maximization
Factor analysis
Multivariate statistics
Sequential data modeling
Face and gesture recognition
Student's t-distribution
Engineering and Technology
Hidden Markov models
Machine learning
Markov processes
Signal processing
Statistical
Electrical Engineering - Electronic Engineering - Information Engineering

IEEE Transactions on Pattern Analysis and Machine Intelligence

Αγγλική γλώσσα

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, vol. 31, no. 9, pp. 1657-1669

none
© IEEE




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.