Spectral conjugate gradient methods with sufficient descent property for neural network training

This item is provided by the institution :
University of Patras   

Repository :
Nemertes   

see the original item page
in the repository's web site and access all digital files if the item*



Spectral conjugate gradient methods with sufficient descent property for neural network training (EN)

Πιντέλας, Παναγιώτης
Λιβιέρης, Ιωάννης

Livieris, Ioannis (EN)
Pintelas, Panagiotis (EN)

Technical Report (EN)

2008-09-01 (EN)
2010-04-08T08:12:20Z (EN)


Conjugate gradient methods constitute an excellent choice for efficiently training large neural networks since they don't require the evaluation of the Hessian matrix neither the impractical storage of an approximation of it. Despite the theoretical and practical advantages of these methods their main drawback is the use of restarting procedures in order to guarantee convergence, abandoning second order derivative information. In this work, we propose a neural network training algorithm which preserves the advantages of classical conjugate gradient methods and simultaneously avoids the inefficient restarts. Encouraging numerical experiments verify that the presented algorithm provides fast, stable and reliable convergence. (EN)
Σε αυτήν την εργασία, αξιολογούμε την απόδοση μιας νέας κλάσης μεθόδων συζυγών κλίσεων για την εκπαίδευση νευρικών δικτύων. Οι προτεινόμενες μέθοδοι διατηρούν τα πλεονεκτήματα των κλασσικών μεθόδων συζυγών κλίσεων και εκμεταλλεύονται την απουσία των συχνά αναπαποτελεσματικών επανεκκινήσεων. Τα ενθαρρυντικά αριθμητικά αποτελέσματα επαληθεύουν ότι οι προτεινόμενες μέθοδοι παρέχουν γρηγορότερη, σταθερότερη και πιο αξιόπιστη σύγκλιση.


Descent spectral conjugate gradient methods (EN)
Truncate strategy (EN)
Neural networks (EN)
Sufficient descent property (EN)
Νευρωνικά δίκτυα
Μέθοδοι συζυγών κλίσεων





*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)