δείτε την πρωτότυπη σελίδα τεκμηρίου στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
Spectral conjugate gradient methods with sufficient descent property for neural network training
Πιντέλας, Παναγιώτης
Λιβιέρης, Ιωάννης
Livieris, Ioannis
Pintelas, Panagiotis
Conjugate gradient methods constitute an excellent choice for efficiently training large neural networks since they don't require the evaluation of the Hessian matrix neither the impractical storage of an approximation of it. Despite the theoretical and practical advantages of these methods their main drawback is the use of restarting procedures in order to guarantee convergence, abandoning second order derivative information. In this work, we propose a neural network training algorithm which preserves the advantages of classical conjugate gradient methods and simultaneously avoids the inefficient restarts. Encouraging numerical experiments verify that the presented algorithm provides
fast, stable and reliable convergence.
Σε αυτήν την εργασία, αξιολογούμε την απόδοση
μιας νέας κλάσης μεθόδων συζυγών κλίσεων για την εκπαίδευση νευρικών δικτύων. Οι προτεινόμενες μέθοδοι διατηρούν τα πλεονεκτήματα των κλασσικών μεθόδων συζυγών κλίσεων και εκμεταλλεύονται την απουσία των συχνά αναπαποτελεσματικών επανεκκινήσεων. Τα ενθαρρυντικά αριθμητικά αποτελέσματα επαληθεύουν ότι οι προτεινόμενες μέθοδοι παρέχουν γρηγορότερη, σταθερότερη και πιο αξιόπιστη σύγκλιση.
*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.
Βοηθείστε μας να κάνουμε καλύτερο το OpenArchives.gr.