Classification of Large Biomedical Data using ANNs based on BFGS method

 
Το τεκμήριο παρέχεται από τον φορέα :

Αποθετήριο :
Νημερτής
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο




2009 (EL)

Classification of Large Biomedical Data using ANNs based on BFGS method

Πιντέλας, Παναγιώτης
Σωτηρόπουλος, Δημήτριος
Λιβιέρης, Ιωάννης

Livieris, Ioannis
Sotiropoulos, Dimitris
Pintelas, Panagiotis

Artificial neural networks (ANNs) have been widely used for knowledge extraction from biomedical datasets and constitute an important role in bio-data exploration and analysis. In this work, we proposed a new curvilinear algorithm for training large neural networks which is based on the analysis of the eigenstructure of the memoryless BFGS matrices. The proposed method preserves the strong convergence properties provided by the quasi-Newton direction while simultaneously it exploits the nonconvexity of the error surface through the computation of the negative curvature direction without using any storage and matrix factorization. Moreover, for improving the generalization capability of trained ANNs, we explore the incorporation of several dimensionality reduction techniques as a pre-processing step.
Τα τεχνητά νευρωνικά δίκτυα έχουν ευρέως χρησιμοποιηθεί για την εξόρυξη γνώσης από βιοιατρικά δεδομενά και συνιστούν ένα σημαντικό ρόλο στην ανάλυση και στην εξερεύνηση βιο-δεδομένων. Σε αυτή την εργασία, προτείνουμε μια νέα μέθοδο για την εκπαίδευση νευρωνικών δικτύων, ο οποίος βασίζεται στην ανάλυση του ιδιοσυστήματος των BFGS χωρίς μνήμη πινάκων. Η προτεινόμενη μέθοδος διατηρεί τις ισχυρές ιδιότητες σύγκλισης, οι οποίες παρέχονται από την κατεύθυνση quasi-Newton ενώ παράλληλη εκμεταλλεύεται τη μη-κυρτότητα της συνάρτησης σφάλματος με τον υπολογισμό της κατεύθυνσης της αρνητικής κυρτότητας αποφεύγοντας την αποθήκευση και την παραγοντοποίηση πίνακα. Επιπλέον για τη βελτίωση της ικανότητας γενίκευσης των εκπαιδευόμενων δικτύων, ερευνούμε την επίδραση της υιοθέτησης τεχνικών μείωσης της διάστασης του συνόλου δεδομένων ως ένα βήμα προεπεξεργασίας.

Technical Report

Dimensionality reduction
Νευρωνικά δίκτυα
Artificial neural networks
Biomedical data
Curvilinear search
Βιοιατρικά δεδομένα
Feature extraction
memoryless BFGS


Αγγλική γλώσσα

2009-04-01
2010-04-08T08:13:39Z





*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.