Iterative multi-frame super-resolution image reconstruction via variance-based fidelity to the data

 
Το τεκμήριο παρέχεται από τον φορέα :
Πανεπιστήμιο Πατρών
Αποθετήριο :
Νημερτής
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



Iterative multi-frame super-resolution image reconstruction via variance-based fidelity to the data

Panagiotopoulou, Antigoni

Παναγιωτοπούλου, Αντιγόνη

Multi-frame Super-Resolution (SR) image reconstruction creates a single High-Resolution (HR) image from a sequence of Low-Resolution (LR) frames. Apart from resolution increment, blurring and noise removal is also achieved. In stochastic regularized methods, the SR problem is formulated by means of two terms, the data-fidelity term and the regularization term. In the present work, a novel estimator named Var-norm has been proposed for utilization in the data-fidelity term. This estimator presents a simple mathematical form based on the variance of the SR estimation error, i.e. on the difference between the estimated LR frame and the corresponding measured LR frame. The introduced Var-norm estimator is combined with the Bilateral Total Variation (BTV) regularization to formulate a novel SR method. The SR performance of the proposed method is directly compared with that of two SR techniques existing in the literature. Experimentation proves that the proposed method outperforms the existing methods.

Journal (paper)

Super-resolution
Influence function
BTV regularizer
Data-fidelity
Variance of estimation error

Πανεπιστήμιο Πατρών (EL)
University of Patras (EN)

Αγγλική γλώσσα

2014-08-27T10:36:38Z
2013-12
2014-08-27

IJRSA, vol. 3, no. 4, 2013, DOI: 10.14355/ijrsa.2013.0304.05

International Journal of Remote Sensing Applications



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.