A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions

see the original item page
in the repository's web site and access all digital files if the item*



A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions (EN)

Athanassoulis, GA (EN)
Belibassakis, KA (EN)

journalArticle (EN)

2014-03-01T01:34:52Z
2011 (EN)


A non-linear coupled-mode system of horizontal equations is presented, modelling the evolution of nonlinear water waves in finite depth over a general bottom topography. The vertical structure of the wave field is represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional terms, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The present coupled-mode system fully accounts for the effects of non-linearity and dispersion, and the local-mode series exhibits fast convergence. Thus, a small number of modes (up to 5-6) are usually enough for precise numerical solution. In the present work, the coupled-mode system is applied to the numerical investigation of families of steady travelling wave solutions in constant depth, corresponding to a wide range of water depths, ranging from intermediate depth to shallow-water wave conditions, and its results are compared vs. Stokes and cnoidal wave theories, as well as with fully nonlinear Fourier methods. Furthermore, numerical results are presented for waves propagating over variable bathymetry regions and compared with nonlinear methods based on boundary integral formulation and experimental data, showing good agreement. (C) 2010 Elsevier B.V. All rights reserved. (EN)

Engineering, Civil (EN)
Engineering, Ocean (EN)

Finite water depth (EN)
wave field (EN)
Non-linear (EN)
Non-linear methods (EN)
Fourier transform (EN)
Bathymetry (EN)
Waves (EN)
coupling (EN)
Numerical solution (EN)
Finite depth (EN)
Series expansion (EN)
Intermediate depths (EN)
wave dispersion (EN)
Bottom topography (EN)
Evanescent mode (EN)
Wavefields (EN)
Wave potentials (EN)
Free surfaces (EN)
Numerical investigations (EN)
Nonlinear water waves (EN)
Fast convergence (EN)
Nonlinear equations (EN)
Experimental data (EN)
Fourier methods (EN)
Shallow-water waves (EN)
Numerical methods (EN)
nonlinearity (EN)
Coupled mode (EN)
Vertical structures (EN)
Hydrodynamics (EN)
Cnoidal wave (EN)
Numerical results (EN)
Travelling wave solution (EN)
Water depth (EN)
Water waves (EN)
water depth (EN)
wave propagation (EN)
Non-Linearity (EN)
Coupled modes (EN)
bathymetry (EN)
boundary integral method (EN)
Boundary integral formulations (EN)
Variable bathymetry (EN)

Coastal Engineering (EN)

English

ELSEVIER SCIENCE BV (EN)




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)