Control of a hybrid marine propulsion plant with Reinforcement Learning

δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



Control of a hybrid marine propulsion plant with Reinforcement Learning (EN)

Τσικνιάς, Γεώργιος (EL)
Tsiknias, Georgios (EN)

ntua (EL)
Papalambrou, George (EN)
Kyriakopoulos, Kwnstantinos (EN)
Tzafestas, Kwnstantinos (EN)

masterThesis

2021-06-30
2021-08-31T08:04:29Z


Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Συστήματα Αυτοματισμού” (EL)
In this thesis, the implementation of reinforcement learning applications in a hybrid dieselelectric marine power plant is investigated. Initially, modeling procedure of the components of the power plant is been presented. For each component (engine, electric motor/ generator, battery), a models was introduced from previous studies [1]. The aim is to nd RL methods and set-ups which are accurate and computationally e cient, so that the agent would be able to solve the optimization problem in real time. Moreover, di erent environment formulations where also reviewed in order to set up a reliable simulation for the RL controller-agent. Reinforcement Learning control is a sophisticated machine learning control method which can handle nonlinear multi-variable problems with constraints by solving the optimization problem of minimizing an objective function over a nite horizon. The developed algorithms were evaluated regarding the performance with simulations in a virtual hybrid diesel-electric set-up in Julia Pluto environment and Matlab RL Designer. Finally, the performance of the developed trained agent-controllers was simulated and veri ed on working cycles with the modeled hybrid propulsion plant HIPPO-2. The simulations were conducted for various load pro les and state transitions, and the agentscontrollers were evaluated regarding the their ability to track the contextually reference and satisfy the prede ned constraints. (EN)


'Ελεγχος (EL)
Ενισχυμένη μάθηση (EL)
Υβριδικό σύστημα (EL)
DQN (EN)
Control (EN)
Reinforcement Learning (EN)
PPO (EN)
Hybrid system (EN)

Αγγλική γλώσσα

Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών (EL)

Default License




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.