δείτε την πρωτότυπη σελίδα τεκμηρίου στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
Σε αυτή τη διατριβή μελετούμε τη θεωρία παραμορφώσεων καμπυλών με αυτομορφισμούς χρησιμοποιώντας το κανονικό ιδεώδες. Ανάγουμε το πρόβλημα της ανύψωσης καμπυλών με αυτομορφισμούς σε ένα πρόβλημα ανύψωσης γραμμικών αναπαραστάσεων. Αποδεικνύουμε μια ικανή και αναγκαία συνθήκη για το πότε μια modular αναπαράσταση μιας ομάδας G, η οποία είναι το ημιευθές γινόμενο μιας κυκλικής p-ομάδας με μια κυκλική τάξης πρώτης προς το p, σε ένα σώμα χαρακτηριστικής p, ανυψώνεται σε μια αναπαράσταση πάνω από μια τοπική περιοχή κυρίων ιδεωδών χαρακτηριστικής μηδέν που περιέχει τις ρίζες της μονάδας κάποιας δύναμης του p, και το οποίο είναι το απαραίτητο απαραίτητο εργαλείο για το κύριο μας αποτέλεσμα. Τέλος, κοιτάμε το τοπικό πρόβλημα ανύψωσης δράσεων της G. Εισάγουμε ένα κριτήριο βασισμένο στην Harbater-Katz-Gabber συμπαγοποίηση των τοπικών δράσεων, το οποίο μας επιτρέπει να αποφασίσουμε εάν μια τοπική δράση μπορεί να ανυψωθεί ή όχι. Ειδικότερα, για την περίπτωση της διεδρικής ομάδας, βρίσκουμε ένα παράδειγμα διεδρικής τοπικής δράσης που δεν μπορεί να ανυψωθεί, παρέχοντας έτσι ένα αντιπαράδειγμα για την γενικευμένη εικασία του Oort και ένα ισχυρότερο εμπόδιο από το KGB-εμπόδιο.
(EL)
In this dissertation we study the deformation theory of curves with automorphisms by using the canonical ideal. We reduce the problem of lifting curves with automorphisms to a lifting problem of linear representations.
We establish a necessary and sufficient condition for a modular representation of a group G which is the semidirect products of a cyclic p-group by a cyclic prime to p group, in a field of characteristic p to be lifted to a representation over local principal ideal domain of characteristic zero containing the roots of unity of a power of p, which is an essential tool for our main result.
Finally our focus extend to the local lifting problem of actions of G. We introduce a criterion based on Harbater-Katz-Gabber compactification of local actions, which allows us to decide whether a local action lifts or not. In particular for the case of dihedral group we give an example of dihedral local action that can not lift and in this way we give a counterexample for the generalized Oort conjecture and a stronger obstruction than the KGB-obstruction.
(EN)
*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.
Βοηθείστε μας να κάνουμε καλύτερο το OpenArchives.gr.