ecn=t2 ; for all t > 1, where c > 0 is an absolute constant. For larger values of t a better estimate is provided. As an application we provide a dichotomy result for the problem of giving an upper bound for the mean width of an isotropic convex body: For any 2 6 q 6 n we dene the Dvoretzky numbers of the Lq-centroid bodies of K: k(q) := n w(Zq(K)) R(Zq(K)) 2 : We set = (K) := min26q6n k(q) and we prove that w(K) 6 C p n minf p ; p n=gLK; where C > 0 is an absolute constant. From the above estimate we recover the, presently, best (general) upper bound for the mean width of an isotropic convex body. 3. Log-concave measures satisfying logarithmic Sobolev inequality. Let be a Borel probability measure on Rn. We say that satises the log-Sobolev inequality with constant > 0 if for any (locally) Lipschitz function f : Rn ! R we have Ent(f2) 6 2 Z Rn krfk22 d; where Ent(g) is the entropy of g with respect to : for any g : Rn ! R+ we de ne Ent(g) := E(g log g)  E(g) log E(g): Starting with the observation that a log-concave isotropic measure on Rn which satises the log-Sobolev inequality with constant is 2 with constant b = O( p ), we prove that it shares many of the geometric properties discussed in the previous Chapters. Finally, we show that a log-concave measure which satises the log-Sobolev inequality with constant , also has property ( ) with cost function w(x) = c kxk22 , i.e. for any bounded measurable function f on Rn one has Z Rn ef2w d Z Rn ef d 6 1; where f2w is the minimal convolution of f and w dened by (f2w)(x) := infff(y) + w(x  y) : y 2 Rng:. University of Athens. Βαλέττας Πέτρος. License: CC BY-NC 4.0" />

Προβλήματα Ασυμπτωτικής Γεωμετρικής Ανάλυσης

This item is provided by the institution :
/aggregator-openarchives/portal/institutions/uoa   

Repository :
Pergamos Digital Library   

see the original item page
in the repository's web site and access all digital files if the item*



Προβλήματα Ασυμπτωτικής Γεωμετρικής Ανάλυσης

Βαλέττας Πέτρος (EL)

born_digital_thesis
Διδακτορική Διατριβή (EL)
Doctoral Dissertation (EN)

2012


Η διδακτορική αυτή διατριβή εντάσσεται στην περιοχή της Ασυμπτωτικής Γεωμετρικής Ανάλυσης. Τελείως σχηματικά αντιμετωπίζουμε τρία προβλήματα: (α) Υποκανονικές διευθύνσεις σε κυρτά σώματα του n-διάστατου Ευκλειδείου χώρου. (β) Εκτίμηση του μέσου πλάτους στην ισοτροπική θέση, καθώς και την σύνδεσή του με την κατανομή των υποκανονικών διευθύνσεων. (γ) Γεωμετρία των λογαριθμικά κοίλων μέτρων πιθανότητας που ικανοποιούν την λογαριθμική ανισότητα Sobolev με δεδομένη σταθερά κ. Οι μέθοδοι που χρησιμοποιούμε για την προσέγγιση των προβλημάτων είναι κυρίως πιθανοθεωρητικές, αλλά και γεωμετρικές. Βασικό ζητούμενο είναι η ακριβής εξάρτηση από την διάσταση του χώρου όταν αυτή αυξάνει.   (EL)
ABSTRACT The main theme of this Ph.D. Thesis is the use of geometric and probabilistic methods for the study of the geometry of logarithmically concave measures in high dimensions. We discuss the following topics of the theory: 1. -estimates for random marginals. Let ( ;A; ) be a probability space. For any function f : ( ; ) ! R which is A-measurable, we dene the -norm of f (1 6 6 2) as follows: kfk = inf t > 0 : Z exp jf(!)j t d(!) 6 2 : Let be a log-concave Borel probability measure on Rn and let 2 [1; 2]. We say that satises a estimate in the direction of 2 Sn1 if there exists a constant b = b() > 0 such that kh; ik 6 bkh; ik2. We say that is a measure with constant B if B := sup2Sn1 b() < 1. For any subspace F of Rn we dene the projection (marginal) F () of with F ()(A) := (P1 F (A)) for any Borel set A in F. It is known that every log-concave probability measure is a 1-measure with constant B1() 6 C, where C > 0 is an absolute constant. We show that a random marginal F () of an isotropic log-concave probability measure on Rn exhibits better -behavior. For a natural variant 0 of the standard -norm we show the following: (i) If k 6 p n, then for a random F 2 Gn;k we have that F () is a 02 -measure. We complement this result by showing that a random F () is, at the same time, supergaussian. (ii) If k = n, 1 2 < < 1, then for a random F 2 Gn;k we have that F () is a 0 ()-measure, where () = 2 31 . 2. Subgaussian directions of log-concave measures. Let be a log-concave probability measure on Rn. A direction 2 Sn1 is called subgaussian (with constant b > 0) for if the following estimate holds: kh; ik 2 6 bkh; ik2: We show that if is a centered log-concave probability measure on Rn then, c1 p n 6 j 2()j1=n 6 c2 p log n p n ; where 2() is the 2-body of dened by its support function h 2()() := kh; ik 2 ; 2 Sn1 and c1; c2 > 0 are absolute constants. A direct consequence of the previous volumetric estimate is the existence of subgaussian directions for with constant r = O( p log n). Using the basic argument of the proof \hereditarily", we can gain some extra information on the distribution of the 2-norm of linear functionals on isotropic convex bodies. In particular, we can show the following measure estimate: If K is an isotropic convex body on Rn then (f 2 Sn1 : kh; ik 2 6 ct p log nLKg) > ecn=t2 ; for all t > 1, where c > 0 is an absolute constant. For larger values of t a better estimate is provided. As an application we provide a dichotomy result for the problem of giving an upper bound for the mean width of an isotropic convex body: For any 2 6 q 6 n we dene the Dvoretzky numbers of the Lq-centroid bodies of K: k(q) := n w(Zq(K)) R(Zq(K)) 2 : We set = (K) := min26q6n k(q) and we prove that w(K) 6 C p n minf p ; p n=gLK; where C > 0 is an absolute constant. From the above estimate we recover the, presently, best (general) upper bound for the mean width of an isotropic convex body. 3. Log-concave measures satisfying logarithmic Sobolev inequality. Let be a Borel probability measure on Rn. We say that satises the log-Sobolev inequality with constant > 0 if for any (locally) Lipschitz function f : Rn ! R we have Ent(f2) 6 2 Z Rn krfk22 d; where Ent(g) is the entropy of g with respect to : for any g : Rn ! R+ we de ne Ent(g) := E(g log g)  E(g) log E(g): Starting with the observation that a log-concave isotropic measure on Rn which satises the log-Sobolev inequality with constant is 2 with constant b = O( p ), we prove that it shares many of the geometric properties discussed in the previous Chapters. Finally, we show that a log-concave measure which satises the log-Sobolev inequality with constant , also has property ( ) with cost function w(x) = c kxk22 , i.e. for any bounded measurable function f on Rn one has Z Rn ef2w d Z Rn ef d 6 1; where f2w is the minimal convolution of f and w dened by (f2w)(x) := infff(y) + w(x  y) : y 2 Rng: (EN)


Greek

Σχολή Θετικών Επιστημών » Τμήμα Μαθηματικών » Τομέας Μαθηματικής Ανάλυσης
Βιβλιοθήκη και Κέντρο Πληροφόρησης » Βιβλιοθήκη Σχολής Θετικών Επιστημών

https://creativecommons.org/licenses/by-nc/4.0/




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)