Symmetries of Differential equations with applications in Relativistic Physics

 
Το τεκμήριο παρέχεται από τον φορέα :

Αποθετήριο :
Εθνικό Αρχείο Διδακτορικών Διατριβών
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο




2014 (EL)
Συμμετρίες διαφορικών εξισώσεων και εφαρμογές στην Σχετικιστική Αστροφυσική
Symmetries of Differential equations with applications in Relativistic Physics

Paliathanasis, Andronikos
Παλιαθανάσης, Ανδρόνικος

In this thesis, we study the one parameter point transformations which leave invariant the differential equations. In particular we study the Lie and the Noether point symmetries of second order differential equations. We establish a new geometric method which relates the point symmetries of the differential equations with the collineations of the underlying manifold where the motion occurs. This geometric method is applied in order the two and three dimensional Newtonian dynamical systems to be classified in relation to the point symmetries; to generalize the Newtonian Kepler-Ermakov system in Riemannian spaces; to study the symmetries between classical and quantum systems and to investigate the geometric origin of the Type II hidden symmetries for the homogeneous heat equation and for the Laplace equation in Riemannian spaces. At last but not least, we apply this geometric approach in order to determine the dark energy models by use the Noether symmetries as a geometric criterion in modified theories of gravity.
Σε αυτή την εργασία μελετάμε τους μονοπαραμετρικούς μετασχηματισμούς κάτω από τους οποίους οι διαφορικές εξισώσεις είναι αναλλοίωτες. Ειδικότερα μελετάμε τις σημειακές συμμετρίες Lie και Noether διαφορικών εξισώσεων τάξεως. Αναπτύσσουμε μια γεωμετρική μέθοδο για τον υπολογισμό των συμμετριών η οποία συνδέει τις σημειακές συμμετρίες των διαφορικών εξισώσεων με τις συμμετρίες του χώρου που πραγματοποιείται η κίνηση. Η γεωμετρική μέθοδος εφαρμόζεται σε διάφορα προβλήματα όπως: η κατηγοριοποίηση των συμμετριών Νευτώνειων συστημάτων δύο και τριών διαστάσεων, η γενίκευση του συστήματος Kepler-Ermakov σε καμπύλους χώρους, η σύνδεση των συμμετριών ανάμεσα σε κλασσικά και κβαντικά συστήματα και η αναζήτηση Τύπου ΙΙ κρυφών συμμετριών στην κυματική εξίσωση και στην εξίσωση διάδοσης θερμότητας σε καμπύλους χώρους. Τέλος, η γεωμετρική μέθοδος εφαρμόστηκε σαν γεωμετρικό κριτήριο για την επιλογή διάφορων μοντέλων στις εναλλακτικές θεωρίες βαρύτητας.

Wave equation
Συμμετρίες διαφορικών εξισώσεων
Ολοκληρώματα κινήσεως
Integrals of motion
General relativity
Κοσμολογία
Cosmology
Σχετικότητα
Κυματική εξίσωση
Lie symmetries and lie algebas

Εθνικό Κέντρο Τεκμηρίωσης (ΕΚΤ) (EL)
National Documentation Centre (EKT) (EN)

Αγγλική γλώσσα

2014


National and Kapodistrian University of Athens
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ)

BY



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.