This item is provided by the institution :
National Documentation Centre (EKT)   

Repository :
National Archive of PhD Theses  | ΕΚΤ NA.Ph.D.   

see the original item page
in the repository's web site and access all digital files if the item*



Ομόσπονδη, πολυπρακτορική, βαθιά και ενισχυμένη μάθηση
Federated, multi-agent, deep reinforcement learning

Psaltis, Athanasios
Ψάλτης, Αθανάσιος

PhD Thesis

2024


Το τοπίο της τεχνητής νοημοσύνης (ΤΝ) αναδιαμορφώνεται από την Ομόσπονδη Μάθηση (ΟΜ), μια αποκεντρωμένη προσέγγιση στη μηχανική μάθηση (ΜΜ) που ενισχύει την ιδιωτικότητα δεδομένων και τη συνεργατική εκπαίδευση μοντέλων. Αυτή η διατριβή εξετάζει τις προκλήσεις και τις δυνατότητες της ΟΜ, επικεντρώνοντας στην βελτιστοποίηση της αποδοτικότητας επικοινωνίας, την ενίσχυση της απόδοσης μοντέλου και τη διασφάλιση της ανθεκτικότητας σε διάφορα περιβάλλοντα. Η έρευνα περιλαμβάνει μια λεπτομερή ανασκόπηση της λογοτεχνίας και την ταυτοποίηση των βασικών προκλήσεων στην ΟΜ. Διεξήχθησαν μια σειρά από μελέτες για να αντιμετωπιστούν συγκεκριμένες πτυχές: η βελτιστοποίηση της μετάδοσης δεδομένων και η διαχείριση διάφορων αρχιτεκτονικών μοντέλων, η κατανομή δεδομένων και η επιλογή κόμβων, η μάθηση αναπαράστασης και η ομόσπονδη απόσταξη, η σταδιακή μάθηση και η διατήρηση γνώσης, καθώς και η εκπαίδευση μοντέλων με περιορισμένα δεδομένα. Κάθε επιμέρους μελέτη συνέβαλε στον τομέα αναπτύσσοντας καινοτόμους αλγορίθμους, τους οποίους δοκίμασε σε προσομοιωμένα περιβάλλοντα ΟΜ και συνέκρινε με υπάρχουσες μεθόδους. Τα κύρια ευρήματα της έρευνας περιλαμβάνουν τη βελτίωση της αποδοτικότητας της επικοινωνίας με μειωμένες απαιτήσεις υπερφόρτωσης και εύρους ζώνης, την ενίσχυση της απόδοσης του μοντέλου στη διαχείριση ετερογενών δεδομένων και μεταβλητότητας της αρχιτεκτονικής του μοντέλου, αποτελεσματικές στρατηγικές για την αντιμετώπιση της καταστροφικής λήθης και μεθοδολογίες ευέλικτες σε περιορισμένα και διασκορπισμένα δεδομένα. Η εφαρμοσιμότητα της ΟΜ αποδείχθηκε σε πρακτικά σενάρια, επιδεικνύοντας τη δυναμική της σε διάφορους τομείς. Συμπερασματικά, η διατριβή συνεισφέρει σημαντικά στην προώθηση της ΟΜ. Αντιμετωπίζει θεμελιώδεις προκλήσεις και αποδεικνύει την προσαρμοστικότητα και την αποτελεσματικότητα της ΟΜ σε εφαρμογές του πραγματικού κόσμου. Τα ευρήματα τονίζουν τον ρόλο της ΟΜ ως μεθόδου που εξασφαλίζει την ιδιωτικότητα, αυξάνει την αποδοτικότητα και επιδεικνύει ευελιξία στον τομέα της τεχνητής νοημοσύνης και της μηχανικής μάθησης.
The landscape of artificial intelligence (AI) is being reshaped by Federated Learning (FL), a decentralized approach to machine learning (ML) that enhances data privacy and collaborative model training. This thesis delves into the challenges and potential of FL, focusing on optimizing communication efficiency, enhancing model performance, and ensuring robustness in diverse settings. The research encompasses a detailed literature review and the identification of core challenges in FL. A series of studies were conducted to address specific aspects: optimizing data transmission and handling diverse model architectures, data partitioning and client selection, representation learning and federated distillation, incremental learning and knowledge retention, and training models with limited data. Each study contributed to the field by developing innovative algorithms, tested in simulated FL environments and compared with existing methods. Key findings of the research include improved communication efficiency with reduced overhead and bandwidth requirements, enhanced model performance in handling heterogeneous data and model architecture variability, effective strategies to combat catastrophic forgetting, and methodologies adept at working with limited and scattered data. The applicability of FL was demonstrated in practical scenarios, showcasing its potential in various domains. In conclusion, the dissertation significantly contributes to the advancement of FL. It addresses foundational challenges and demonstrates the adaptability and efficacy of FL in real-world applications. The findings emphasize FL's role as a method that ensures privacy, boosts efficiency, and showcases flexibility in the field of AI and ML.

Επιστήμες Μηχανικού και Τεχνολογία ➨ Επιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ ➨ Υπολογιστές, Υλικό (hardware) και Αρχιτεκτονική
Φυσικές Επιστήμες ➨ Επιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική ➨ Τεχνητή νοημοσύνη

Ετερογενή δεδομένα
Data privacy
Σταδιακή μάθηση
Επιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ
Model heterogeneity
Electrical Engineering, Electronic Engineering, Information Engineering
Artificial Intelligence
Υπολογιστές, Υλικό (hardware) και Αρχιτεκτονική
Computer and Information Sciences
Φυσικές Επιστήμες
Communication efficiency
Non-IID Data,
Ομόσπονδη μάθηση
Επιστήμες Μηχανικού και Τεχνολογία
Αποδοτικότητα επικοινωνίας
Incremental learning
Engineering and Technology
Federated learning
Τεχνητή νοημοσύνη
Επιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική
Natural Sciences
Computer science, Hardware and Architecture
Ετερογένεια αρχιτεκτονικής μοντέλου
Ιδιωτικότητα δεδομένων

English

Πανεπιστήμιο Δυτικής Αττικής
University of West Attica

Πανεπιστήμιο Δυτικής Αττικής. Σχολή Μηχανικών. Τμήμα Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)