Evolutionary image generation with genetic algorithms and deep learning

This item is provided by the institution :
University of West Attica   

Repository :
Institutional Repository Polynoe   

see the original item page
in the repository's web site and access all digital files if the item*



Evolutionary image generation with genetic algorithms and deep learning

Κωνσταντοπούλου, Δέσποινα

Σχολή Μηχανικών
Τμήμα Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών
ZACHARIA, PARASKEVI
Τμήμα Μηχανικών Βιομηχανικής Σχεδίασης και Παραγωγής
Τεχνητή Νοημοσύνη και Βαθιά Μάθηση
Παπουτσιδάκης, Μιχαήλ
Leligou, Helen C. (Nelly)

Μεταπτυχιακή διπλωματική εργασία

2024-10-11

2024-11-28T08:23:52Z


This paper introduces GAGAN, a hybrid model that integrates Generative Adversarial Networks (GANs) with Genetic Algorithms (GA) to improve GAN performance in image generation. Traditional GANs often face challenges such as mode collapse and unstable training, where the generator and discriminator struggle to consistently improve. To address these issues, GAGAN employs a hybrid approach: the discriminator’s weights are optimized using GA, while the generator is trained through standard gradient-based backpropagation. The GA evolves the discriminator’s weights, enhancing its ability to distinguish real from fake images, providing more robust feedback to the generator. This hybrid method combines the exploratory nature of evolutionary algorithms with the efficiency of gradient-based optimization. The model was trained on 2,000 images from the CelebA dataset, generating images at a resolution of 128x128. The results demonstrate that GAGAN outperforms traditional GANs, leading to higher-quality images and more stable convergence. This novel approach enhances adversarial training by leveraging the strengths of both GA and backpropagation techniques.


Deep learning
Generative artificial intelligence
Discriminator optimization
Machine learning
Image generation
Generative adversarial networks - GAN
GAGAN
Artificial intelligence
Genetic algorithms

English

Πανεπιστήμιο Δυτικής Αττικής

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ - Τμήμα Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών - Μεταπτυχιακές διπλωματικές εργασίες - Τεχνητή Νοημοσύνη και Βαθιά Μάθηση

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές
http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Διεθνές




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)