Computational Methods on Atomistic and Quasi-Continuum Models

RDF 

 
Το τεκμήριο παρέχεται από τον φορέα :
Πανεπιστήμιο Κρήτης
Αποθετήριο :
E-Locus Ιδρυματικό Καταθετήριο
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



Σημασιολογικός εμπλουτισμός/ομογενοποίηση από το EKT
2011 (EL)
Υπολογιστικές μέθοδοι σε ατομιστικά και κατά προσέγγιση-συνεχή μοντέλα σε κρυσταλικά υλικά
Computational Methods on Atomistic and Quasi-Continuum Models

Κιλικιάν, Ειρήνη-Βιργινία Παναγιώτης

Μακριδάκης, Χαράλαμπος

Τα συνεχή μοντέλα αποτελούν υπό συνθήκες προσεγγίσεις ατομιστικών μοντέλων. Τα ατομιστικά μοντέλα, παρόλο που σε σημαντικά προβλήματα εφαρμογών θεωρείται ότι αντικατοπτρίζουν με πιστότερο τρόπο την πραγματικότητα, είναι εξαιρετικά δύσκολο να αποτελέσουν βάση υπολογισμών, δεδομένου του τεράστιου πλήθους των αγνώστων που προκύπτουν από την κλίμακα του προβλήματος. Μια κατηγορία τέτοιων ατομιστικών μοντέλων είναι μοντέλα κρυσταλλικού πλέγματος τα οποία εμφανίζονται στην μοντελοποίηση σύγχρονων υλικών. Σε μια πιο μακροσκοπική θεώρηση, τα διακριτά (ατομιστικά) μοντέλα μπορούν να αντικατασταθούν από συνεχή μοντέλα, όπου οι τελεστές διαφορών αντικαθίστανται από παραγώγους. Ωστόσο, σε πολλές περιπτώσεις τα συνεχή μοντέλα δεν περι¬γράφουν σωστά τη συμπεριφορά των διακριτών εξισώσεων. Γι' αυτό έχουν προταθεί υπολογιστικές μέθοδοι που μοντελοποιούν τα φαινόμενα με έναν σχεδόν-συνεχή τρόπο : εκεί που η λύση αναμένεται να είναι σχεδόν ομοιόμορφη, μακριά από ανομοιογένειες και ζώνες ταχείας μεταβολής, το διακριτό πλέγμα αντικαθίσταται από συνεχές μέσο, ενώ διατηρείται η αρχική ατομιστική μορφή σε υποπεριοχές ανομοιομορφίας και ταχέων μεταβολών της λύσης. Ιδιαίτερη προσοχή χρειάζεται στις περιοχές όπου συναντιούνται οι δύο αυτές θεωρήσεις. Αντικείμενο της εργασίας είναι η μελέτη και ανάλυση μεθόδων με σχεδόν-συνεχή χαρακτήρα σε μία χωρική διάσταση (EL)
Continuum models are in most cases conditional approximations of atomistic models. Although the atomistic models are considered to capture in a more accurate way the true nature of significant applications, it is extremely difficult to base computational models on them, because of the vast number of unknowns due to the scale of the formulation. A kind of such atomistic models that is of interest are the crystal lattices models, which appear in modern material science. In a more macroscopic perspective, discrete models can be replaced by continuum ones described by PDEs, where difference operators are replaced by derivatives. However, it is already known that in many cases the continuum models fail to describe properly the behaviour of discrete equations. To tackle this fundamental issue, new methods are proposed : methods that picture the phenomena in a quasi-continuum way : in areas where the solution is expected to be relatively smooth, far from discontinuities and large gradients, the discrete lattice is replaced by a continuum material described by finite elements theory, while the initial discrete (atomistic) form is maintained in areas of non-smooth or large gradient solutions. The aim of this work is the study and analysis of methods with quasi-continuum approach in 1D. (EN)

text

Παραμόρφωση κρυστάλλων
Quasicontinuum method
Stresses
Finite elements
Coarse-graining
Σύζευξη μοντέλων
Coupling
Σχεδόν-συνεχής μέθοδος
Πεπερασμένα στοιχεία
Εκτράχυνση μοντέλων
Δυνάμεις τάσης
Crystal deformation

Πανεπιστήμιο Κρήτης (EL)
University of Crete (EN)

2011-07-15




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.