A modification of the generalized airfoil equation and the corresponding numerical methods

 
Το τεκμήριο παρέχεται από τον φορέα :

Αποθετήριο :
Νημερτής
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο




1982 (EL)
Μια τροποποίηση της γενικευμένης εξίσωσης της αεροτομής και των αντίστοιχων αριθμητικών μεθόδων
A modification of the generalized airfoil equation and the corresponding numerical methods

Ioakimidis, Nikolaos

Ιωακειμίδης, Νικόλαος

Greek Ministry of Research and Technology
The two-dimensional problem of steady, inviscid, irrotational, subsonic flow around a straight or curvilinear thin airfoil or an array of such airfoils inside a wind tunnel is generally reduced to a one-dimensional Cauchy type real or complex singular integral equation called generalized airfoil equation. Here a new form of this equation is suggested (with no change in the unknown function) with index equal to 1 instead of 0. The new equation is supplemented by an integral condition assuring the uniqueness of its solution. This modification of the generalized airfoil equation permits the application of the theoretical results and the algorithms for the numerical solution of Cauchy type singular integral equations with index equal to 1 (mainly appearing in crack problems in the theory of plane elasticity) to the generalized airfoil equation and it establishes the relationship between crack and airfoil problems. Moreover, it permits the utilization of the classical Chebyshev polynomials instead of the airfoil polynomials. Three applications are also made and numerical results are presented.
Το διδιάστατο πρόβλημα της σταθερής (μόνιμης), χωρίς ιξώδες, αστρόβιλης, υποηχητικής ροής γύρο από μια ευθύγραμμη ή καμπυλόγραμμη λεπτή αεροτομή ή μια διάταξη τέτοιων αεροτομών μέσα σε αεροδυναμική σήραγγα ανάγεται γενικά σε μια μονοδιάστατη πραγματική ή μιγαδική ιδιόμορφη ολοκληρωτική εξίσωση τύπου Cauchy που καλείται γενικευμένη εξίσωση της αεροτομής. Εδώ προτείνεται μια νέα μορφή αυτής της εξίσωσης (χωρίς καμία αλλαγή στην άγνωστη συνάρτηση) με δείκτη ίσο με 1 αντί για 0. Η νέα εξίσωση συμπληρώνεται από μια ολοκληρωτική συνθήκη που εξασφαλίζει τη μοναδικότητα της λύσης της. Αυτή η τροποποίηση της γενικευμένης εξίσωσης της αεροτομής επιτρέπει την εφαρμογή των θεωρητικών αποτελεσμάτων και των αλγόριθμων για την αριθμητική επίλυση ιδιόμορφων ολοκληρωτικών εξισώσεων τύπου Cauchy με δείκτη ίσο με 1 (που εμφανίζονται κυρίως σε προβλήματα ρωγμών στη θεωρία της επίπεδης ελαστικότητας) στη γενικευμένη εξίσωση της αεροτομής και αποδεικνύει τη σχέση μεταξύ προβλημάτων ρωγμών και αεροτομών. Επιπλέον, επιτρέπει τη χρησιμοποίηση των κλασικών πολυωνύμων Chebyshev αντί για τα πολυώνυμα της αεροτομής. Γίνονται επίσης τρεις εφαρμογές και παρουσιάζονται αριθμητικά αποτελέσματα.

Technical Report

Irrotational flow
Υποηχητική ροή
Wind tunnels
Steady flow
Μέθοδος του Galerkin
Cracks
Gauss–Chebyshev method
Μέθοδος των Gauss–Chebyshev
Inviscid flow
Ροή χωρίς ιξώδες
Εξίσωση της αεροτομής
Σταθερή ροή
Γενικευμένη εξίσωση της αεροτομής
Airfoil equation
Generalized airfoil equation
Αριθμητικές μέθοδοι
Numerical integration
Numerical methods
Μόνιμη ροή
Ολοκληρώματα τύπου Cauchy
Πολυώνυμα Chebyshev
Thin airfoils
Αεροδυναμικές σήραγγες
Αριθμητική ολοκλήρωση
Πολυώνυμα της αεροτομής
Lobatto–Chebyshev method
Cauchy type singular integral equations
Ιδιόμορφες ολοκληρωτικές εξισώσεις τύπου Cauchy
Subsonic flow
Cauchy type integrals
Μέθοδος των Lobatto–Chebyshev
Airfoil polynomials
Αστρόβιλη ροή
Λεπτές αεροτομές
Galerkin method
Ρωγμές
Chebyshev polynomials


Αγγλική γλώσσα

1982-09-15
2018-04-25T12:35:38Z




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.