see the original item page
in the repository's web site and access all digital files if the item*



Source code classification using neural networks (EL)

Kanavakis, Eleftherios (EN)

ntua (EL)
Koziris, Nektarios (EN)
Georgios, Goumas (EN)
Pneumatikatos, Dionisios (EN)
Goumas, Georgios (EN)

bachelorThesis

2020-11-27T10:43:23Z
2020-09-09


The purpose of this dissertation is to study the problem of source code classification using neural networks. More specifically, in this problem, a piece of code is classified into an algorithmic class based on the function it performs. Pre-existing research has shown that neural networks are an effective way of modeling source code and solving such classification problems. Although literature results are encouraging, there are limitations related not only to datasets and preprocessing techniques but also to machine learning models. To this end, we propose a system that initially builds quality datasets, which are free of biases and noise. It then uses compilers to process these sets and finally uses neural networks to classify them into an algorithmic class. In the context of optimizing the system above, we studied a variety of preprocessing techniques and machine learning models. (EN)


Τεχνικές προ-επεξεργασίας πηγαίου κώδικα (EL)
Μεταγλωττιστές (EL)
Αφηρημένο συντακτικό δέντρο (AST) (EL)
Ταξινόμηση πηγαίου κώδικα (EL)
Αναδρομικά νευρωνικά δίκτυα (EL)
AST (EN)
LSTM (EN)
HAN (EN)
Source code classification (EN)
Compilers (EN)

Greek
English

Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (EL)
CSlab (EN)

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα
http://creativecommons.org/licenses/by-nc-nd/3.0/gr/




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)